# **RHIC AC Dipole Preliminary Study**

W. Meng

8 November 2007

### Requirements:

(1) Integrated dipole field =100 G-m @ 39 kHz; (sometimes@ 60kHz)

Aperture -- limited by ceramic vacuum pipe 4" (ID) with 0.25" thickness wall  $\longrightarrow$  4.5" (OD) = 11.43 cm  $\longrightarrow$  Clear bore: R = 6.0 cm (coils)

(2) Field quality – low E-3 field errors within R < 3 cm

Goals: dipole b1 ~ 100 Gauss (Lm = 1 m)
sextupole ratio b3/b1 ~ 1.5E-3 @ R=2 cm
3.4E-3 @ R=3 cm
obey scaling ~ (R/Ro)\*\*2

(All cases in this study are achieved such quality)

Existing AC Dipole – Large current sheet type

small aperture  $\sim R=1.5$  cm; Io = 79 A

Good field quality (in 2d), but high inductance  $\sim 104 \, \mu H$ 

Scaled from Existing One –

If we use similar conductor, more turns (N=8, or 9) are needed to build up enough height to achieve field quality.

### Scaled from existing one – Air-coil



$$N = 9 (x2)$$

$$Io = 127.15 A$$

$$L = 153.7 \mu H$$
(per magnet with  $L_m$ =100 cm)

### Scaled with Ferrite (CMD5005)



$$N = 9 (x2)$$
  
Io = 69.7 A

 $L = 296.4 \, \mu H$ 

How to improve?

Inductance can be reduced by reducing the number of turns

- (I) Cosine theta type (with/without ferrite shell);
- (II) Window-frame ferrite yoke, with thin Cu conductor; (Cu skin depth: d = 0.33 mm @ 39 kHz)

## (I) Cosine Theta Type -- N = 7 (x2) Air-coil

Two-layer

One-layer (small conductor)





$$Io = 162.7 A$$
  
 $L = 90.7 \mu H$ 

$$Io = 149.7 A$$
  
 $L = 93.3 \mu H$ 

### Cosine Theta Type -- N = 7 (x2) with Ferrite

Two-layer



$$Io = 89.8 A$$
  
 $L = 171.1 \mu H$ 

One-layer (small conductor)



$$Io = 79.9 A$$
  
 $L = 175.8 \mu H$ 

### Cosine Theta Type -N=5 (x2)

#### Air-coil



$$Io = 223.0 A$$
  
 $L = 47.53 \mu H$ 



Io = 
$$122.63 A$$
  
L =  $88.9 \mu H$ 

### Cosine Theta Type -N=4(x2)

#### Air-coil



Io = 264.7 AL =  $32.2 \mu\text{H}$ 

#### with ferrite



Io = 
$$145.6 \text{ A}$$
  
L =  $60.4 \mu\text{H}$ 

### Cosine Theta Type -N=3 (x2)

#### Air-coil



Io = 350.7 A $L = 18.8 \mu H$ 

#### with ferrite



$$Io = 192.9 A$$
  
 $L = 34.8 \mu H$ 

### Cosine Theta Type -N=2(x2)

#### Air-coil



Io = 517.3 A $L = 9.2 \mu H$ 

### with ferrite



Io = 
$$284.5 \text{ A}$$
  
L =  $16.7 \mu \text{ H}$ 

# **Cosine Type Summary --**

- (1) All the cases above (except cosine 7-turn one-layer) same conductors are used (as existing one: d=0.5"), tentatively
- (2) Ferrite shell reduces current by a factor of ~ 0.52-0.55; increases inductance by a factor of ~ 1.9; it gives slightly better field, and will make internal field stable in the tunnel

#### (3) Comments ---

- a. Less number of turns gives smaller inductance, but requires tights tolerance on conductor position random errors;
- b. Real conductor (Litz wire) may contribute additional error due to the deformation of the strand/bundle;
- c. Preference: with Ferrite shell (?).

### (II) Window-frame Type –

$$N=1 (x2)$$
  
 $Io = 480 A$   
 $L = 5.1 \mu H$ 

If use solid Cu stripes, loss in conductors: 400 W (39 kHz);  $(P = ?J^2/s \text{ ds})$  480 W (60 kHz)



# Current density distribution in the Cu conductor (f = 39 kHz) $I(t) = 480*\cos(2p \text{ f t})$



Window-frame Type Summary –

- (1) It gives good field control and small inductance;
- (2) The loss in the Cu conductor is an issue...